Industri

grabein
10.01.2019 kl 03:36 7999

"While lithium-ion cells have gotten incrementally better over the years, they seem set for a big boost in 2019 through the increased use of an element not unfamiliar to the electronics industry: silicon."

...

"Happily enough, silicon’s expansion problem is not insurmountable. Even now, some lithium-ion batteries have anodes that include particles containing silicon combined with silicon dioxide (the stuff of sand) and coated with carbon. Elon Musk revealed in 2016 that the Tesla’s lithium-ion cells are built that way. But to date, the amount of silicon in anodes has been minimal.

Expect that to change in 2019. To begin with, a California startup named Sila Nanotechnologies plans to commercialize a silicon-rich anode material. Company cofounder and Georgia Tech professor Gleb Yushin says that Sila has developed a “drop-in solution” for existing battery manufacturers, which is slated to go into commercial production in 2019."

...

"That helps explain the interest of BMW, which is working with Sila to explore whether lithium-ion batteries built with the new anode material can be used in its electric cars. Nevertheless, Yushin says “the initial products will be wearables,” for which the cost of the battery is not such a critical factor and the amount of anode material required is much more modest, meaning that his company can more easily meet demand. Yushin expects lithium-ion batteries with Sila anodes will be in millions of devices in 2019."

...

"Sila probably won’t be the only company to unveil a silicon-battery technology this year. Another California company, Enovix, is expected to introduce an anode that is made entirely of silicon and silicon oxides.

Ashok Lahiri, cofounder and chief technology officer for Enovix, along with two colleagues, described the company’s battery technology in detail in these pages in 2017. At the time, Enovix planned to borrow fabrication techniques from the semiconductor industry to construct batteries from thin wafers of solar-grade silicon. But the company reconsidered that strategy after grappling with how to apply it to larger lithium-ion batteries for vehicles. “We realized that the solar-grade substrates could not scale,” says Lahiri.

So Enovix revamped its approach and is now using a metal foil instead of a silicon wafer as the substrate for its battery. The overall geometry of the battery, however, remains the same. It’s just built differently—by stacking components, says Lahiri, who explains that keeping the anode stack under high pressure inhibits the expansion during charge and allows the anode to be made entirely from silicon and silicon oxides.

“We think our battery will be from 30 to 70 percent better, depending on the application,” says Lahiri. If so, or if Sila comes through with an anode that can similarly boost capacity by such double digits, it’ll really shake up the battery industry, where normally, as Lahiri quips, “people kill for 5 or 10 percent.”"

https://spectrum.ieee.org/energy/renewables/to-boost-lithiumion-battery-capacity-by-up-to-70-add-silicon

Rapportér innlegg

Vennligst skriv inn kommentar på hva du mener er upassende og trykk send. Dersom kommentar ikke er nødvendig, vennligst trykk send direkte.
E-postadressen brukes kun for å få kontakt med deg i forbindelse med advarselen.
E-postadressen brukes kun for å få kontakt med deg i forbindelse med advarselen.