Nyheter innen silisiumbatterier

Siden dette kan bli et spennende område for REC i nær fremtid, kan det jo være interessant å holde seg oppdatert på nyheter herfra.

Kan jo starte med LG Chem:
LG Chem invests in Enevate; silicon-dominant Li-ion battery technology

Enevate Corporation, developer of a silicon-dominant composite anode material and high energy density batteries (earlier post), announced that LG Chem has participated in Enevate’s recent funding.

Introduced in November 2017, Enevate’s HD-Energy Technology for EVs enables Lithium-ion (Li-ion) cells with up to 50% higher capacity than conventional graphite cells. The cells can be charged to 75% capacity in five minutes. They can also safely charge and discharge down to -40°C and capture more energy during regenerative braking, extending their range in cold climates.

Enevate’s HD-Energy Technology is a self-standing, silicon-dominant composite anode with more than 70% silicon. The conductive, silicon-dominant composite film anode is essentially 100% active material that can store lithium and has a high electrical conductivity.

09.12.2019 kl 14:17 191

Er overbevist om at REC bruger deres dygtige medarbejder og deres laboratorium til at udvikle batterier.
Tror og håber de er meget tæt på et gennembrud med udviklingen.
Der er alt for stille, er der nogen der har haft kontakt til REC for at høre hvad de kommer med og hvor langt de er med udviklingen.
09.12.2019 kl 13:53 242

13:25 Grønt lys til batteri-satsing EU gir sju medlemsland grønt lys til å spytte inn over 30 milliarder kroner i et konsortium som skal utvikle nye og mer effektive batterier til elbiler.
08.12.2019 kl 18:20 549

Takk for input, Randers og Questi! Det ser ut at masseproduksjon lar vente på seg, og hva slags teknologier som får sitt gjennombrudd er litt for spennende.
08.12.2019 kl 16:33 670

Haha, vi så samme artikkel grabein
Det ser ut som at de her lar en elastisk elektrolytt fungere som bindermaterial.
"silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE)"

De trådene i illustrasjonen som forbinder silisiumgranulene kan være det som fungere som current collector :)
Redigert 08.12.2019 kl 16:37 Du må logge inn for å svare
07.12.2019 kl 09:06 859

New method enables the widespread use of silicon-based anodes in Li-ion batteries

Novel polymer to increase energy density, the stability of lithium-ion batteries

Donghai Wang, professor of mechanical and chemical engineering, said, “We found that if you surround the silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE), it allows the silicon to remain stable, so the particles won’t displace within the electrode.”

The GPE consists of a soft ether domain, which responds to its elasticity and a hard cyclic domain, which prevents excessive swelling of the polymer.

Wang reported, “It’s a new approach, where the two components work synergistically together to make the GPE swell and shrink appropriately while keeping silicon anode structure stable.”

According to scientists, their work could potentially increase the energy storage within lithium-ion batteries by 20%.

Wang said, “This is an enabling technology to allow for the ability to use pure silicon in the anodes. Traditionally, only 5% of silicon is used, so the material’s boosting effect is limited. But by using this method, replacing it with pure silicon will significantly increase the capacity and energy density of the cell.”

“Through the union of the silicon and the GPE, it is a pathway to create the next generation of lithium-ion batteries.”

05.12.2019 kl 23:33 1051

Binder = fyllmasse/limet som holder de aktive partiklene (feks Silisiumgranuler) i elektrodene sammen.
Current collector(s) = strømførende materiale (ofte kobber) rundt hver side av sine respektive elektroder.

Polymererte Siloksaner [R2SiO]n (norsk: silikon som i silikonpupper) er faktisk fleksibel. Silisium i kraft av å være halvleder er faktisk strømledende dersom det er dopet. R'en i formelen er i vanlig silikon methyl-grupper, kunne da tenkes å være erstattet med dopede nanopartikler av SI.

Så det er teoretisk mulig å ha et stoff der Si inngår (derav ikke 100% men 92%) som er både fleksibel, strømførende, sammenbindende og som har mekanisk styrke.
Redigert 06.12.2019 kl 01:09 Du må logge inn for å svare
05.12.2019 kl 23:01 1089

..kan jo si det på en annen måte enn jeg gjorde, (pluss påpeke igjen at det ikke er mine spekulasjoner).

Det vil uansett bli en HELT ny type batteri, hvor det kanskje brukes en tradisjonell elektrode.
Men å mikse ny type anode med ny type katode blir vel verre ?

Så da heier vi vel på anode-varianten med 92% silisium....
05.12.2019 kl 18:11 1238

Hadde vi kvitta oss med litt overdreven pluss/minus-snakk her inne og, så hadde det nok ikke vanket nobelpris, men i det minste litt god stemning og interessant meningsutveksling.
05.12.2019 kl 18:09 1239

Det kan se sånn ut. Men at elektroden har store deler silisium lover bra. Jeg så meg litt blind på mitt lagrede google-søk, og var mentalt farget mot anoder. Skylder på småbarnsfar-tåka...
05.12.2019 kl 17:41 1274

Hva er det dere tror egentlig? Hvis det var slutt på pluss og minus i batteriene, ville det ha vanket Nobelpris og stor oppstandelse. Kanskje begrense fantasien et par hakk!
05.12.2019 kl 17:22 1300

Grabein, la du merke til ordlyden der, ang anoden med 92% silisium ?

"Stanford University have developed a binder-free, flexible, and free-standing electrode comprising
an unprecedented 92% silicon content for Li-ion batteries"

.."and free-standing electrode" - hvilket er samme ordlyden som ble brukt om Nikolas katode, rett ovenfor her.

Videre; begge er "binder-free" også.

Nikola: "The Nikola prototype cell is the first battery that removes binder material and current collectors,
enabling more energy storage within the cell".

-Det virker merogmer som at det snakkes om helt nye typer batterier. Det synes ikke å være en forbedring av det tradisjonelle
batteri, men derimot en helt ny teknologi som enten gjør gml type anode eller katode overflødig ??

05.12.2019 kl 12:13 1501

Leydenjar’s silicon anode enters production realm

Start-up Leydenjar is setting up a pilot production line in Eindhoven to prove its high-capacity battery anodes made from nano-textured silicon can be made not just in labs but in factories as well.

Asked to look back at 3.5 years of developing a new anode recipe for lithium-ion batteries, Christian Rood of Leydenjar prefers to answer what outsiders have told him. “Experts and people from the battery industry say we should be happy with the progress we’ve made. Personally, I would have liked to have seen a little more. I guess I’m not easily satisfied,” the company co-founder admits. In any case, it’s fair to say: so far, so good.

Leydenjar, named after the battery’s predecessor, thanks its existence to technology that was developed many years ago at solar cell research institute ECN. Researcher Wim Soppe theorized that nano-texturing would improve the performance of thin-film silicon solar cells. He then successfully developed a plasma-enhanced chemical vapor deposition (PECVD) process to create a layer of silicon nano-pillars on a substrate. Unfortunately, they didn’t perform as well as hoped.

The technology was shelved and almost forgotten until Soppe learned that silicon is a superior host for lithium ions, yet fails miserably as a battery anode because it can’t handle the mechanical stress associated with repeatedly taking in and letting go of guests. The porous structure of pillared silicon might be able to handle that, Soppe figured. This time, he was onto something. In fact, the lithium-loading capacity of his silicon approaches the theoretical limit, without getting damaged by loading and unloading lithium.

Fast forward to today, Leydenjar is gearing up to prove its technology can be mass-produced. The ultimate goal: making anodes for lithium-ion batteries that outperform the traditional graphite ones, without adding cost.

Between the initial lab experiments and looking into manufacturing, a lot of work has been done. One important obstacle was layer thickness. “For proof-of-principle experiments, 200 nanometer is fine, but as an anode in a commercial battery, it needs to be 50 times thicker. Otherwise, it wouldn’t be able to generate a high enough capacity per area,” Rood explains.

Another delicate task was selecting the battery’s electrolyte. Rood: “In a battery, a solid electrolyte interface is formed on the electrodes after a short period of operation. This film’s characteristics depend on the electrolyte and can affect battery performance substantially. We needed to find a good match for our anode.”

Leydenjar successfully increased layer thickness and identified a proper electrolyte, allowing the company to pair the anode with a suitable cathode and start building actual batteries. Their prototype promptly won the BMW Start-up Challenge, providing Leydenjar with an opportunity to present their technology to key executives and developers of the car manufacturer.

“It got us quite a lot of exposure as well. We received calls from various battery and car companies,” says Rood. That kind of attention is a big help when trying to round up additional funding, which Leydenjar secured in March 2018. “This money we used to optimize the energy density of the anode. Our silicon has tenfold the capacity compared to graphite, leading to a 50 percent higher energy density in the battery.”

“We also started working on our production process, because we won’t be selling batteries but rather the manufacturing equipment for our anodes – along with know-how, of course. Our PECVD tools need to seamlessly fit into existing production infrastructure without adding cost.” Both these items have been ticked off from Leydenjar’s list.

Next up is proving all this still holds at actual production volumes. “This is why we’re setting up a roll-to-roll pilot production line in Eindhoven now (the anodes use copper foil as a substrate, PvG). In addition, this will allow us to engage with potential customers and partners on a larger scale. In fact, we’re already working with an OEM and battery manufacturer to develop prototype battery cells.”

A better buy
Apart from the pilot line, Leydenjar is also setting up its own battery lab in Leiden, which will develop battery recipes tailored to different applications. Initially, the start-up targets specialized niche markets, after which it will work its way up to consumer products, to ultimately penetrate the holy grail of battery markets: automotive. Each successive application is more demanding, eg pertaining to battery life.

“We aim to ship our first fully optimized modules to customers in 2021,” states Rood. Will Leydenjar still be a company on its own by then? “I expect we’ll have partnered up with a company in the battery industry. We’re becoming a better buy with every step we take, so sooner or later, an offer should present itself.”


Dette kommer helt klart, Airbus og fly/drone- industrien kan enkelt ta silicon baserte batterier i bruk nå, nærmest en forutsettning. I motsettning til andre industrier som først må fase ut gammle produkter og forpliktelser til underleverandører.
Redigert 26.11.2019 kl 12:52 Du må logge inn for å svare

Amprius har flere års erfaring med silicon baserte batterier. De har produkter som overgår konkurentene en høy gang og det er ikke et lab-produkt som kanskje kommer. Spørsmålet er hvor raskt ulike aplikasjonsområdene tar teknologien i bruk. https://www.amprius.com/technology/

Amprius was the first company to introduce 100 per cent silicon anodes in lithium ion batteries to the market in 2013. It manufactures the highest energy density commercial batteries in the industry. The company’s products and technology include a 100 per cent silicon nanowire anode, silicon-graphite composite anodes, lithium-rich cathodes, and high voltage electrolytes tailored for silicon.
Redigert 26.11.2019 kl 12:19 Du må logge inn for å svare
26.11.2019 kl 10:15 2375

Jeg tror at strømkretsene kan kobles til collector-platene, og enten anoden og/eller katoden kan være 'fraværende' (når det gjelder vekt-hensyn) dersom det er en del av 'miljøet' eller er en gass, feks atmosfærisk oksygen.


Redigert 26.11.2019 kl 10:27 Du må logge inn for å svare
26.11.2019 kl 08:12 2469

Et batteri må nødvendigvis ha 2 poler(elektroder) for å kunne være et batteri. Anoden er en av polene og kan ikke være overflødig.

Jeg har lest gjennom patentene til Nikola - og det eneste de har er beholdere. Selskapet de skal kjøpe som har batteriteknologien har patenter på Silisium. Jeg tenker da det er porøs silisium det er snakk om. Samt at det ikke er grafen dette her. Det er mitt syn,,, kan ta feil? Men som sagt ikke et eneste grafenpatent så langt jeg kan se.
22.11.2019 kl 16:34 3201

Apropos spekulere - følgende setning fra Nikola har fått noen til å lure på om anoden er overflødig i det nye konseptet:

"Technology encompasses world’s first free-standing / self-supported electrode with a cathode that has 4x the energy density of lithium-ion".

.. free-standing / self-supported electrode........

22.11.2019 kl 15:14 3257

Ja, og i katoden ser jeg det spekuleres i om de bruker selen eller svovel.
22.11.2019 kl 14:57 3277

Når det gjelder Nikola Motor så handler det om katoden - og ikke anode/silicon
21.11.2019 kl 23:33 3475

Battery Industry Leaders Invest $18 Million in Seattle Start-up: Group14 Technologies to Scale Li-ion Anode Material That Promises 30% Improvement in Energy and Cost

21.11.2019 kl 23:33 3480

Jeg har spurt dem på mail, de har ikke svart. Helt sikre kan vi ikke være.

Spennende ting som skjer på batterifronten. Er vi sikre på at Nikolas batterigjennombrudd baserer seg på silisium?
21.11.2019 kl 13:06 3624

Dutch startup LeydenJar to open pilot plant for its super battery technology

Dutch startup LeydenJar is opening a pilot plant for manufacturing new-generation batteries that store up to 50 percent more energy. LeydenJar and a number of joint development partners hope to use the pilot plant, which is set to be up and running by mid-2020, to demonstrate that the revolutionary batteries can be manufactured for the same price as traditional lithium-ion batteries. The spectacular increase in energy storage is due to the porous silicon structure that has been patented by LeydenJar.

Christian Rood, founder of LeydenJar, said:

The new pure silicon anode technology, which we developed together with the TNO research institute, will mean an incredible breakthrough. Using the current technology it is difficult to up the energy contained in a battery, but LeydenJar’s approach means an increase of 50 percent without having to dramatically change the production process. That’s a major advance towards meeting the growing demand for energy storage, be it in e-flight, electric vehicles, consumer electronics or stationary storage.

Rood believes:

The new anode technology from LeydenJar also means major opportunities for the battery gig factories we need in Europe to meet the demand. And that is why the European Union is, together with BOM Brabant Ventures, DOEN Participaties and informal investors, investing in the region of four million euros in the project.

Rolph Segers of TNO:

We are very happy that we can use our knowledge of materials to contribute to this development. LeydenJar is set to play a significant role in the manufacture of a new generation of batteries in a competitive pan-European ecosystem.

Wouter van Westenbrugge of DOEN Participatie, said:

Better and cheaper batteries accelerate the transition to a sustainable energy system. LeydenJar’s technology can have a major impact in that respect, bringing down the price of energy transition and also making it more accessible to all levels of society.

Marc de Haas, Business Developer at BOM Brabant Ventures, said:

LeydenJar is opening a pilot plant in the heart of the Brainport region. That equates to great opportunities for Brabant companies in terms of playing a significant role in a market that is crucial for energy transition. And BOM Brabant Ventures is happy to contribute to that.

21.11.2019 kl 10:40 3693

Det er vel to ting som må presiseres her:
1) Nikola må bevise at det de sier medfører riktighet (merkelig å komme med dette hele ett år før de skal vise verden hva de har laget)
2) Hva har det å si for REC. Sannheten er at det vet vi ingenting om.
21.11.2019 kl 06:52 3846

Phoenix-lastbilproducent Nikola Corp hævder 'spiludskiftning' batteri fremskridt
Russ Wiles Arizona Republik
Offentliggjort 15:57 EST 20. november 2019

Trevor Milton, Nikola CEO og stifter, introducerer Nikola To brintelektriske semi-truck på Nikola World 2019 på Westworld i Scottsdale, Ariz. 16. april 2019.
Michael Chow / Republikken
Nikola Corp., den førende producent af tunge lastvogne med nulemission og andre køretøjer, hævder at have opnået "spilskiftende" fremskridt inden for battericelle-teknologi, der vil gøre det muligt for sine brintelektriske lastbiler at køre længere mellem afgifter til lavere omkostninger og med reduceret miljøpåvirkning.

Det Phoenix-baserede selskab, der planlægger at påbegynde kommerciel lastbilproduktion på et anlæg i det centrale Arizona i 2022, sagde, at det har skabt verdens første fritstående elektrode-automobilbatteri med øget "energitetthed" eller lagringskapacitet.

Fabrikken i Coolidge kunne beskæftige mere end 3.000 mennesker. Det er planlagt at bryde jorden nær midten af ​​næste år.

Efter 800 cyklusser eller opladninger vil et konventionelt lithium-ion-batteri blive nedbrudt, sagde Trevor Milton, Nikolas administrerende direktør og grundlægger, i et interview tirsdag. Men virksomhedens nyudviklede batteri kan ramme 2.000 cykler, hvilket svarer til cirka 1 million lastbilmile kørt over syv til otte års typisk brug, sagde han.

Store, fuldt lastede elektriske lastbiler drevet af Nikolas prototype-batteri kunne køre 800 miles mellem opladningerne, mens lastbiler, der er drevet af dets nye brint-elektriske brændselsceller, kunne rejse 1.000 miles mellem stop og kan tankes med brint på 15 minutter.

Det privatejet selskab hævder at have 14 milliarder dollars reservationer til brint-elektriske lastbiler fra kunder, herunder Anheuser-Busch og US Xpress. "Det vil tage os 10 år at blive fanget", når vi opfylder disse ordrer, sagde Milton.

Virksomheden planlægger at afsløre den nye batteriteknologi mere detaljeret ved sin Nikola World 2020-demonstration. Årets begivenhed blev afholdt i Scottsdale i april. Sted og dato for næste års konference er endnu ikke blevet annonceret.

Længere rækkevidde, ingen emissioner
Teknologien kunne også udvide rækkevidden af ​​eksisterende elektriske personbiler til 600 miles fra omkring 300 miles med lidt eller ingen stigning i batteristørrelse og -vægt, skønt Milton sagde, at Nikola ikke vil deltage i produktion af personbiler.

Virksomheden planlægger imidlertid at dele den intellektuelle ejendom med andre producenter, inklusive bilproducenter, der betaler for at være en del af et licenskonsortium.

"Vores mål er at fjerne emissioner over hele kloden," sagde Milton. "Men vi kan ikke gøre det hele selv."

Phoenix-baserede Nikola vil banke jorden næste år på et lastbilproduktionsanlæg i det centrale Arizona.
MIchael Chow
Ifølge Nikola er virksomhedens batterier lettere, billigere at fremstille og mindre tilbøjelige til kortslutning (som kan starte brande) sammenlignet med konventionelle lithium-ion-battericeller. Deres komponenter er også lette at genanvende og mere miljøvenlige til deponeringsanlæg, fordi de ikke indeholder giftige elementer som nikkel, kobolt, magnesium og aluminium, sagde Milton.
Fjernelse af disse komponenter giver også billigere produktion, sagde han.

20.11.2019 kl 10:53 3986

Johnson Matthey plc (JM; London; www.matthey.com) has acquired the full intellectual property rights to a portfolio of silicon-alloy-based anode materials from 3M Company.

The acquisition is a further step in JM’s longterm strategy to apply its world class scientific expertise to develop a portfolio of future battery solutions for customers for automotive applications.