Nyheter innen silisiumbatterier
Siden dette kan bli et spennende område for REC i nær fremtid, kan det jo være interessant å holde seg oppdatert på nyheter herfra.
Kan jo starte med LG Chem:
LG Chem invests in Enevate; silicon-dominant Li-ion battery technology
Enevate Corporation, developer of a silicon-dominant composite anode material and high energy density batteries (earlier post), announced that LG Chem has participated in Enevate’s recent funding.
Introduced in November 2017, Enevate’s HD-Energy Technology for EVs enables Lithium-ion (Li-ion) cells with up to 50% higher capacity than conventional graphite cells. The cells can be charged to 75% capacity in five minutes. They can also safely charge and discharge down to -40°C and capture more energy during regenerative braking, extending their range in cold climates.
Enevate’s HD-Energy Technology is a self-standing, silicon-dominant composite anode with more than 70% silicon. The conductive, silicon-dominant composite film anode is essentially 100% active material that can store lithium and has a high electrical conductivity.
https://www.greencarcongress.com/2018/10/20181024-enevate.html
Kan jo starte med LG Chem:
LG Chem invests in Enevate; silicon-dominant Li-ion battery technology
Enevate Corporation, developer of a silicon-dominant composite anode material and high energy density batteries (earlier post), announced that LG Chem has participated in Enevate’s recent funding.
Introduced in November 2017, Enevate’s HD-Energy Technology for EVs enables Lithium-ion (Li-ion) cells with up to 50% higher capacity than conventional graphite cells. The cells can be charged to 75% capacity in five minutes. They can also safely charge and discharge down to -40°C and capture more energy during regenerative braking, extending their range in cold climates.
Enevate’s HD-Energy Technology is a self-standing, silicon-dominant composite anode with more than 70% silicon. The conductive, silicon-dominant composite film anode is essentially 100% active material that can store lithium and has a high electrical conductivity.
https://www.greencarcongress.com/2018/10/20181024-enevate.html
Redigert 21.01.2021 kl 09:29
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Enevate, a pioneer in advanced silicon-dominant lithium-ion (Li-ion) battery technology capable of extreme fast charging for electric vehicles (EVs), announced its new 4th generation technology optimized for high volume commercialization and manufacturing at gigafactory scale. Enevate is providing a solution to a difficult problem for automotive OEMs and EV battery manufacturers – providing extreme fast charging with high energy density and at lower material cost than conventional Li-ion batteries, while being compatible with existing battery fabrication facilities.
...
Enevate Founder and Chief Technology Officer Dr. Benjamin Park noted that Enevate’s XFC-Energy technology has been designed for large-format pouch, prismatic and cylindrical EV cells, utilizing its pure silicon anode paired with nickel-rich NCA, NCM and NCMA advanced cathodes.
"Enevate’s extreme fast charge technology enables a future where gas stations become drive-through EV charging stations – a win-win for consumers and the environment as electric vehicles replace those using gasoline," Dr. Park said. "Enevate’s technology will help close the usability gap between today’s EVs and gas cars."
Dr. Park will be discussing Enevate’s technology on January 15 at the Advanced Automotive Battery Conference in Weisbaden, Germany, in a presentation titled "Charging Ahead: Commercializing Fast-Charge Si-Dominant Li-ion Cells for EVs."
https://finance.yahoo.com/news/enevate-commercializing-low-cost-battery-110000330.html
...
Enevate Founder and Chief Technology Officer Dr. Benjamin Park noted that Enevate’s XFC-Energy technology has been designed for large-format pouch, prismatic and cylindrical EV cells, utilizing its pure silicon anode paired with nickel-rich NCA, NCM and NCMA advanced cathodes.
"Enevate’s extreme fast charge technology enables a future where gas stations become drive-through EV charging stations – a win-win for consumers and the environment as electric vehicles replace those using gasoline," Dr. Park said. "Enevate’s technology will help close the usability gap between today’s EVs and gas cars."
Dr. Park will be discussing Enevate’s technology on January 15 at the Advanced Automotive Battery Conference in Weisbaden, Germany, in a presentation titled "Charging Ahead: Commercializing Fast-Charge Si-Dominant Li-ion Cells for EVs."
https://finance.yahoo.com/news/enevate-commercializing-low-cost-battery-110000330.html
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
SANTA CLARITA, Calif., Jan. 14, 2020 (GLOBE NEWSWIRE) -- BioSolar, Inc. (BSRC)(“BioSolar” or the “Company”), today announced that its technology partner has commenced production and testing of the second batch of commercial-grade prototype 21700 lithium-ion cells incorporating additional cell design work. Once completed, the prototype batteries will be sent to potential manufacturing and development partners for their in-house qualification testing and analysis.
BioSolar’s core focus is the application of its performance-boosting additive technology to the emerging category of silicon anode lithium-ion battery cells which, in this instance, are in the form of 21700 lithium-ion cells for power tools. BioSolar is currently preparing two different types of commercial grade 21700 prototype cells, the first based on the use of silicon alloy anode material comprised of Si micro-particles (Si-MP), and the second based on the use of pure silicon anode material comprised of Si nano-particles (Si-NP). The primary difference between the two is that the dimensions of Si-MP particles are much larger than those of Si-NP.
...
https://finance.yahoo.com/news/biosolar-begins-production-testing-second-083010474.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAACKBmsepnqr0VObUuWqRkL0VBOJuVOFLDcLW6XB46ht_t3Tww8jMPp4RPg2AnbZRE04GVMo_Tv3vXiSh7w3fHCVHT_QNCVATQaoIFEEtguKu-8wq2hp4FZ9l9DDTwd4mRfiellFeOuyk_InycSq77Mea7ZLMomRVOXnIjjSu0MbO
BioSolar’s core focus is the application of its performance-boosting additive technology to the emerging category of silicon anode lithium-ion battery cells which, in this instance, are in the form of 21700 lithium-ion cells for power tools. BioSolar is currently preparing two different types of commercial grade 21700 prototype cells, the first based on the use of silicon alloy anode material comprised of Si micro-particles (Si-MP), and the second based on the use of pure silicon anode material comprised of Si nano-particles (Si-NP). The primary difference between the two is that the dimensions of Si-MP particles are much larger than those of Si-NP.
...
https://finance.yahoo.com/news/biosolar-begins-production-testing-second-083010474.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAACKBmsepnqr0VObUuWqRkL0VBOJuVOFLDcLW6XB46ht_t3Tww8jMPp4RPg2AnbZRE04GVMo_Tv3vXiSh7w3fHCVHT_QNCVATQaoIFEEtguKu-8wq2hp4FZ9l9DDTwd4mRfiellFeOuyk_InycSq77Mea7ZLMomRVOXnIjjSu0MbO
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
SUNRISE is on target to develop materials based on silicon as a replacement for carbon in the cell anode, and optimising cell designs for specific applications.
https://www.electronicsweekly.com/news/business/nexeon-sampling-silicon-enhanced-batteries-2020-01/
https://www.electronicsweekly.com/news/business/nexeon-sampling-silicon-enhanced-batteries-2020-01/
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Helt sant. Samsung f.eks. har jo anodekomponenter til de som vil lage silisiumanoder, batterier trenger ikke å ha alle delene produsert samme sted.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Men Flying, da.... Er vel mer naturlig at Wacker med blant annet sine to fabrikker i Tyskland, vil ta seg av denne leveransen, vel?
Nei, Torvald får nok satse på en av de tyvetalls!? batteri produsentene som har vært på besøk. 🤭
De var så pågående at JUM ikke tålte presset og solgte seg helt ut. 💥🚀
Nei, Torvald får nok satse på en av de tyvetalls!? batteri produsentene som har vært på besøk. 🤭
De var så pågående at JUM ikke tålte presset og solgte seg helt ut. 💥🚀
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Tja, det kan jo faktisk være slik at silisium anodene blir produsert i USA, sendt til Tyskland og koblet til selve batteriet på fabrikken i Tyskland.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Varta er blant de virkelig store. Eneste er at de ble kjøpt tilbake til Europa fra USA. Så med mindre de likevel ønsker å produsere si-anoder i USA må de vel få silanet sitt fra noen andre.
Ikke kjempelenge til Q4-rapport nå, spent på om det er noe nytt å melde der, og om Røkke også avslører sine tidlige planer i forkant.
Ikke kjempelenge til Q4-rapport nå, spent på om det er noe nytt å melde der, og om Røkke også avslører sine tidlige planer i forkant.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Veldig bra at du holder oss oppdaterte på batterifronten, grabein. Håper det snart dukker opp nyheter om Rec iht dette.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Varta i farta!
VARTA brings consumer battery business back to Europe
German battery maker VARTA AG has bought back its European consumer business in a deal worth €180m
The deal means VARTA AG now controls the worldwide VARTA brand rights for portable batteries, microbatteries and energy storage systems.
VARTA Consumer Batteries is based in Ellwangen, Germany, with its main production in Dischingen, making primary and rechargeable batteries, chargers, power banks, special batteries and lights. It was bought back from Energizer Holdings in the US for €180m. “With this deal, we are seizing the unique opportunity to bring together businesses that belong together,” said Herbert Schein, CEO of VARTA AG. “We are ideally positioned for the future, especially for the massive expansion of our highly profitable lithium-ion production.”
The additional cashflow from the acquisition will be used to expand VARTA’s range of silicon anode lithium ion batteries currently being developed. This project is backed by the Federal Ministry for Economic Affairs and Energy (BMWi) in Germany.
...
https://www.eenewseurope.com/news/varta-brings-consumer-battery-business-back-europe#
VARTA brings consumer battery business back to Europe
German battery maker VARTA AG has bought back its European consumer business in a deal worth €180m
The deal means VARTA AG now controls the worldwide VARTA brand rights for portable batteries, microbatteries and energy storage systems.
VARTA Consumer Batteries is based in Ellwangen, Germany, with its main production in Dischingen, making primary and rechargeable batteries, chargers, power banks, special batteries and lights. It was bought back from Energizer Holdings in the US for €180m. “With this deal, we are seizing the unique opportunity to bring together businesses that belong together,” said Herbert Schein, CEO of VARTA AG. “We are ideally positioned for the future, especially for the massive expansion of our highly profitable lithium-ion production.”
The additional cashflow from the acquisition will be used to expand VARTA’s range of silicon anode lithium ion batteries currently being developed. This project is backed by the Federal Ministry for Economic Affairs and Energy (BMWi) in Germany.
...
https://www.eenewseurope.com/news/varta-brings-consumer-battery-business-back-europe#
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
« As Advano expands this new process, battery makers can incorporate different amounts of silicon nanoparticles to increase battery capacity. For example, if you want the battery to last for 1000 charge-recharge cycles without requiring cooling, the silicon could make up 15 percent of the anode. But sometimes you need only 250 cycles, then you can add up to 70% silicon and more, reports IEEE Spectrum. Ultimately, the idea is to drop prices from $500 to $10,000 per kg of silicon nanoparticles to something between $15 and $150 per kg.»
https://www.inceptivemind.com/advano-silicon-solution-increase-li-ion-battery-capacity-ten-times/10995/
https://www.inceptivemind.com/advano-silicon-solution-increase-li-ion-battery-capacity-ten-times/10995/
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Pe9s
26.12.2019 kl 06:33
14381
VIL SIGNERE HANDELSAVTALE
USAs president Donald Trump bekreftet natt til torsdag at han og Kinas president Xi Jinping vil møtes og signere den første delen av handelsavtalen mellom de to landene.
– Vi vil ha en seremoni hvor vi signerer avtalen, sier Trump ifølge nyhetsbyrået Reuters.
– Avtalen er ferdig, den blir oversatt nå, fortsatte han.
USAs president Donald Trump bekreftet natt til torsdag at han og Kinas president Xi Jinping vil møtes og signere den første delen av handelsavtalen mellom de to landene.
– Vi vil ha en seremoni hvor vi signerer avtalen, sier Trump ifølge nyhetsbyrået Reuters.
– Avtalen er ferdig, den blir oversatt nå, fortsatte han.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
questi
25.12.2019 kl 20:59
14603
https://www.graphene-info.com/global-graphene-group-launches-graphene-silicon-li-ion-battery-anode-material
Dette får man med å kombinere silisium og graphen nanostrukturer:
Silisium = høy lagringskapasitet = batterier som kan holde på mer strøm.
Grafen = strømledende egenskaper + mekaniskstyrke og fleksibilitet = batterier med raskere lading + tåle flere ladingssykluser.
https://www.graphenea.com/pages/graphene
"...The usage of graphene in energy storage is most notably researched through the use of graphene in advanced electrodes. Combining graphene and silicon nanoparticles resulted in anodes that maintain 92% of their energy capacity over 300 charge-discharge cycles, with a high maximum capacity of 1500 mAh per gram of silicon.
Dette får man med å kombinere silisium og graphen nanostrukturer:
Silisium = høy lagringskapasitet = batterier som kan holde på mer strøm.
Grafen = strømledende egenskaper + mekaniskstyrke og fleksibilitet = batterier med raskere lading + tåle flere ladingssykluser.
https://www.graphenea.com/pages/graphene
"...The usage of graphene in energy storage is most notably researched through the use of graphene in advanced electrodes. Combining graphene and silicon nanoparticles resulted in anodes that maintain 92% of their energy capacity over 300 charge-discharge cycles, with a high maximum capacity of 1500 mAh per gram of silicon.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Samsung, derimot, har allerede utviklet viktige komponenter for silisium-anoder.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Det aner jeg ikke, men skulle det være et grafén-basert batteri vil jeg tro anoden må ha iblandet silisium, da ren grafén på nåværende tidspunkt er på et enda tidligere laboratorie-stadium enn silisium-anoder. Skulle det derimot være et solid state batteri med grafén, har jeg ikke hørt noe om at silisium er en del av oppbygningen der. Eneste jeg har hørt når det gjelder solid state er om det er basert på lithium.
Men så er det ytterst tvilsomt om Huawei har grafén-batteri allerede i P40. Sikkert bare noen som ville skape litt hype. Huawei trenger tross alt litt gode vibber nå.
Jeg må ta forbehold om at alt jeg har lest om batterier er fra www, det finnes mer kvalifiserte eksperter på dette forumet enn meg selv på området. Jeg blar bare frem de skrevne nyhetene.
Men så er det ytterst tvilsomt om Huawei har grafén-batteri allerede i P40. Sikkert bare noen som ville skape litt hype. Huawei trenger tross alt litt gode vibber nå.
Jeg må ta forbehold om at alt jeg har lest om batterier er fra www, det finnes mer kvalifiserte eksperter på dette forumet enn meg selv på området. Jeg blar bare frem de skrevne nyhetene.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
@grabein
https://www.gsmarena.com/huawei_france_tweets_that_p40_will_use_graphene_battery_skepticism_ensues-news-40718.php
Ser at det dukker opp rykter om nye og bedre batterier i de nye flaggskiptelefonene til Huawei og Samsung. Du som har satt deg godt inn i dette. Vil det være noe form for RECs produkter i disse?
https://www.gsmarena.com/huawei_france_tweets_that_p40_will_use_graphene_battery_skepticism_ensues-news-40718.php
Ser at det dukker opp rykter om nye og bedre batterier i de nye flaggskiptelefonene til Huawei og Samsung. Du som har satt deg godt inn i dette. Vil det være noe form for RECs produkter i disse?
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Good news!! Valget står ikke lenger mellom solid state eller li-ion med si-anode. Silisium kan brukes i begge!
High-performance anode for all-solid-state lithium batteries is made of silicon nanoparticles
https://techxplore.com/news/2019-12-high-performance-anode-all-solid-state-lithium-batteries.html
God jul!
High-performance anode for all-solid-state lithium batteries is made of silicon nanoparticles
https://techxplore.com/news/2019-12-high-performance-anode-all-solid-state-lithium-batteries.html
God jul!
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Sann
16.12.2019 kl 09:23
15749
Merkelig da at Rec har alt det de andre vil ha i følge deg men ingen vil likevel legge inn bud på Rec for penger de plukker på gata. Rart det der gitt....
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
questi
16.12.2019 kl 07:26
15889
Silan er ikke 'løsningen' :) Silan er det de fleste bruker i sine løsninger :)
Det blir omtrent som mel og bakevarer. REC er melprodusenten produserer melet, Batteriprodusentene er bakerne som lager ulike bakevarer. Man vet ikke hvordan de lager sine kreasjoner, men de aller fleste typer bakevarer inneholder mel. Folk har ikke kunnet kjøpe opp REC før pga det fantes en aktiv storaksjonnær JUM. Man måtte forbi ham.. og nå må folk forbi Røkke. Hvem vet om det ikke er nettopp Nikola som er den som samarbeider med REC :)
Folk regner med at silisium i batterier gir ca 4 ganger energitetthet sammenlignet med vanlig Li-ion. Nettopp det Nikola sier...
Nikola - November 2019: https://nikolamotor.com/press_releases/nikola-corporation-to-unveil-game-changing-battery-cell-technology-at-nikola-world-2020-67
"...Technology encompasses world’s first free-standing / self-supported electrode with a cathode that has 4x the energy density of lithium-ion...The date of Nikola World will be announced soon but is expected to be fall of 2020."
Tore Tovund - Oktober 2018: https://aksjelive.e24.no/article/Ondavl
"...Vi vet ikke så mye om batterier og det er virkelig ikke innenfor vårt kompetanseområde. Men batteriprodusenter sier at batteriene blir fire ganger mer effektive hvis de bruker silisium istedet for grafitt i batteriene, sa Torvund ifølge Finansavisen. Ifølge presentasjonen vil behovet for silisium i batteriproduksjon øke fra 5–10.000 tonn til 100.000 tonn i året. Tesla, Samsung, Panasonic og LG er alle mulige kunder. – Forhåpentligvis, om to til tre år, blir dette en viktig del av vår virksomhet. Batteriselskapene ser spesielt på silangass og veldig små biter av silisium, sier Torvund ifølge Finansavisen..."
Det blir omtrent som mel og bakevarer. REC er melprodusenten produserer melet, Batteriprodusentene er bakerne som lager ulike bakevarer. Man vet ikke hvordan de lager sine kreasjoner, men de aller fleste typer bakevarer inneholder mel. Folk har ikke kunnet kjøpe opp REC før pga det fantes en aktiv storaksjonnær JUM. Man måtte forbi ham.. og nå må folk forbi Røkke. Hvem vet om det ikke er nettopp Nikola som er den som samarbeider med REC :)
Folk regner med at silisium i batterier gir ca 4 ganger energitetthet sammenlignet med vanlig Li-ion. Nettopp det Nikola sier...
Nikola - November 2019: https://nikolamotor.com/press_releases/nikola-corporation-to-unveil-game-changing-battery-cell-technology-at-nikola-world-2020-67
"...Technology encompasses world’s first free-standing / self-supported electrode with a cathode that has 4x the energy density of lithium-ion...The date of Nikola World will be announced soon but is expected to be fall of 2020."
Tore Tovund - Oktober 2018: https://aksjelive.e24.no/article/Ondavl
"...Vi vet ikke så mye om batterier og det er virkelig ikke innenfor vårt kompetanseområde. Men batteriprodusenter sier at batteriene blir fire ganger mer effektive hvis de bruker silisium istedet for grafitt i batteriene, sa Torvund ifølge Finansavisen. Ifølge presentasjonen vil behovet for silisium i batteriproduksjon øke fra 5–10.000 tonn til 100.000 tonn i året. Tesla, Samsung, Panasonic og LG er alle mulige kunder. – Forhåpentligvis, om to til tre år, blir dette en viktig del av vår virksomhet. Batteriselskapene ser spesielt på silangass og veldig små biter av silisium, sier Torvund ifølge Finansavisen..."
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Sann
16.12.2019 kl 06:05
15959
En håpløs eksportvare med andre ord om sylinderfrakt med trailere er utelukket. Ser vanskelig for meg en batteri by som etablerer seg rundt Rec sine fabrikker. Hvorfor mener du Rec aksjonærer her inne i forumet vet mer om Rec sitt potensiale framfor de batteri produserende selskaper? Hvis så mange selskaper har vist interesse for Rec er det merkelig at ingen av de største aktører innen batteriproduksjon har lagt inn bud for oppkjøp av Rec allerede? Hva er det disse aktører ikke vet som aksjonærene i Rec vet? Rec har vært mulig oppkjøps kandidat på billigsalg i lang tid av verdens største aktører men velger å avstå. Troen på bruk av silan som løsning kan med andre ord ikke veie tungt nok relatert til annen ny teknologi som f.eks Nikola Motor nå vil benytte seg av, som øker energitetthet enormt og samtidig halverer kostpris. Hva kan silan bidra med utover dette? Svært lite slik jeg ser det pr. Idag.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
questi
16.12.2019 kl 05:22
15967
Silisium i batterier (istedet for karbon) har alltid vært attraktivt men inntil nylig ikke vært mulig pga volumekspansjon/sprekkdannelse ved opplading. Folk har mange ulike løsninger på sprekkdannelsen nå... Noen batteriselskaper har allerede i dag litt silisium iblandet i karbonet for å få litt av effekten, men dette er en kornete lowtech blanding som hvem som helst kan levere. Disse low-tech silisium blandingsbatterier har ca og 5-10% bedre effekt og sprekker fortsatt oftere enn ren karbon.
For å nå det neste nivået trenger man større kontroll over de mikroskopiske strukturene av Silisium og det er her SILANET kommer inn :)
Det er mange typer silaner og de er alle reaktive. Man blander silan med ulike stoffer i ulike temperatur og trykk, for å skape de former for nano og mikro-strukturer med Silisium man måtte ønske :)
Interessen for REC er formidabel. 30 forskjellige batteriselskaper har allerede kontaktet REC siden ifjor, hvorav en håndfull har resultert i at REC har levert mindre kvantum av prøvematerialer, alt fra mikrogranuler til ulike silaner. Én produsent er i tettsamarbeid med REC på MosesLake - denne bruker silan. Siden mengden det er snakk om vil være veldig stort, er sylinderfrakt med trailere er utelukket. En batterieprodusent vil måtte få forsyning direkte fra REC gjennom rør og da må de legge seg inntil en av RECs fabrikker.
For å nå det neste nivået trenger man større kontroll over de mikroskopiske strukturene av Silisium og det er her SILANET kommer inn :)
Det er mange typer silaner og de er alle reaktive. Man blander silan med ulike stoffer i ulike temperatur og trykk, for å skape de former for nano og mikro-strukturer med Silisium man måtte ønske :)
Interessen for REC er formidabel. 30 forskjellige batteriselskaper har allerede kontaktet REC siden ifjor, hvorav en håndfull har resultert i at REC har levert mindre kvantum av prøvematerialer, alt fra mikrogranuler til ulike silaner. Én produsent er i tettsamarbeid med REC på MosesLake - denne bruker silan. Siden mengden det er snakk om vil være veldig stort, er sylinderfrakt med trailere er utelukket. En batterieprodusent vil måtte få forsyning direkte fra REC gjennom rør og da må de legge seg inntil en av RECs fabrikker.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Sann
16.12.2019 kl 04:50
15959
Hvordan kan du da forklare hvorfor Rec ikke er involvert i noen leveranser til batteri produserende fabrikker globalt pr Idag. Det lages store volum av batterier for å dekke dagens eksplosive satsing på elbiler. Hvorfor vekker ikke Rec interesse blant disse aktører om Rec sitter på en gullgruve av kompetanse, produksjonskapasitet og fremtidens råvareteknologi?
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
questi
15.12.2019 kl 16:01
16129
Det er veldig mange og vidt forskjellige batteriteknologier som er under utvikling.
Det er dessverre ikke gitt at den 'beste' typen vil vinne frem... men en håndfull typer vil bli standarder og bli masseprodusert.
Generelt sett lønner det seg å ikke avvike for langt fra dagens normer i design, materiale og størrelse. Man ønsker jo ikke at alle skal måtte bytte ut sine duppeditter, heller ikke at det må bygges flere nye typer fabrikker for å produsere materialene man trenger :)
Heldigvis, for REC sin del, er det ikke så nøye hvilken teknologi som vinner frem, siden de aller fleste bruker en eller annen form av eksisterende solar/semikonduktor materiale under tilvirkning. Nær sagt alle teknologialternativer bygger på å utnytte Silisium.
Jeg holder en stor knapp på silan (mest allsidig/fleksibel for ulike teknologier) og en mindre knapp på polysilisum (mest rikelig produsert).
Det er dessverre ikke gitt at den 'beste' typen vil vinne frem... men en håndfull typer vil bli standarder og bli masseprodusert.
Generelt sett lønner det seg å ikke avvike for langt fra dagens normer i design, materiale og størrelse. Man ønsker jo ikke at alle skal måtte bytte ut sine duppeditter, heller ikke at det må bygges flere nye typer fabrikker for å produsere materialene man trenger :)
Heldigvis, for REC sin del, er det ikke så nøye hvilken teknologi som vinner frem, siden de aller fleste bruker en eller annen form av eksisterende solar/semikonduktor materiale under tilvirkning. Nær sagt alle teknologialternativer bygger på å utnytte Silisium.
Jeg holder en stor knapp på silan (mest allsidig/fleksibel for ulike teknologier) og en mindre knapp på polysilisum (mest rikelig produsert).
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Er NIKOLA inne på det samme som de prater om her.
https://nikolamotor.com/press_releases/nikola-corporation-to-unveil-game-changing-battery-cell-technology-at-nikola-world-2020-67
Technology encompasses world’s first free-standing / self-supported electrode with a cathode that has 4x the energy density of lithium-ion
Achieves 2,000 cycles
Cell technology expected to cost 50% less to produce than lithium-ion
Could drive down the cost of hydrogen and double the range of battery-electric vehicles worldwide
Nikola will share IP with all other OEM’s around the world that contribute.
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:39
Du må logge inn for å svare
Millimeter tynt solid state-batteri med silicon wafer anode knuser alle ytelses-rekorder!
...
1mm-thick solid-state batteries beat all performance benchmarks
Researchers from CEA-Leti have designed all-solid, inorganic thin-film batteries (TFBs) that exhibit better performance than prior art devices and could expand the market for tiny energy-storage units in medical implantable, injectable and wearable solutions.
Presented at IEDM 2019 in a paper titled “Millimeter Scale Thin-Film Batteries for Integrated High-Energy-Density Storage”, the new design boasts an areal energy density of 890 μAh.cm -2, the highest reported so far for such devices, according to the authors. The new TFB architecture also exhibits high power density, reaching capacity as high as 450 μAh.cm -2 under 3mA.cm -2 current density.
“Thin-film batteries provide some of the highest energy densities of electrochemical energy storage devices, but the inability to increase the electrodes’ thicknesses and control the geometry on the micrometer scale has thus far hindered their effective areal energy density and integration in miniaturized devices”, explained the authors.
The team’s solution to these challenges is a high-energy-density, millimeter-scale, thin-film battery integrating a 20μm-thick LiCoO 2 cathode in a Li-free anode configuration, built on silicon wafers using UV photolithography and etching for the successive deposition and patterning of each layer. Because it is built using a wafer-level process, the new battery could be tightly integrated with other electronic devices such as implantables, cutting on assembly costs and increasing reliability.
“Implantable sensors or biological-function monitoring systems such as intra-ocular pressure sensors and blood-glucose measurement would be particularly suited for our TFBs,” observed Sami Oukassi, lead author of the paper. “External systems, such as cochlear implants and smart contact lenses would also benefit from the advantages of this breakthrough.”
https://www.eenewseurope.com/news/1mm-thick-solid-state-batteries-beat-all-performance-benchmarks
...
1mm-thick solid-state batteries beat all performance benchmarks
Researchers from CEA-Leti have designed all-solid, inorganic thin-film batteries (TFBs) that exhibit better performance than prior art devices and could expand the market for tiny energy-storage units in medical implantable, injectable and wearable solutions.
Presented at IEDM 2019 in a paper titled “Millimeter Scale Thin-Film Batteries for Integrated High-Energy-Density Storage”, the new design boasts an areal energy density of 890 μAh.cm -2, the highest reported so far for such devices, according to the authors. The new TFB architecture also exhibits high power density, reaching capacity as high as 450 μAh.cm -2 under 3mA.cm -2 current density.
“Thin-film batteries provide some of the highest energy densities of electrochemical energy storage devices, but the inability to increase the electrodes’ thicknesses and control the geometry on the micrometer scale has thus far hindered their effective areal energy density and integration in miniaturized devices”, explained the authors.
The team’s solution to these challenges is a high-energy-density, millimeter-scale, thin-film battery integrating a 20μm-thick LiCoO 2 cathode in a Li-free anode configuration, built on silicon wafers using UV photolithography and etching for the successive deposition and patterning of each layer. Because it is built using a wafer-level process, the new battery could be tightly integrated with other electronic devices such as implantables, cutting on assembly costs and increasing reliability.
“Implantable sensors or biological-function monitoring systems such as intra-ocular pressure sensors and blood-glucose measurement would be particularly suited for our TFBs,” observed Sami Oukassi, lead author of the paper. “External systems, such as cochlear implants and smart contact lenses would also benefit from the advantages of this breakthrough.”
https://www.eenewseurope.com/news/1mm-thick-solid-state-batteries-beat-all-performance-benchmarks
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Kvike11
09.12.2019 kl 14:17
15349
Er overbevist om at REC bruger deres dygtige medarbejder og deres laboratorium til at udvikle batterier.
Tror og håber de er meget tæt på et gennembrud med udviklingen.
Der er alt for stille, er der nogen der har haft kontakt til REC for at høre hvad de kommer med og hvor langt de er med udviklingen.
Tror og håber de er meget tæt på et gennembrud med udviklingen.
Der er alt for stille, er der nogen der har haft kontakt til REC for at høre hvad de kommer med og hvor langt de er med udviklingen.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
NRK
13:25 Grønt lys til batteri-satsing EU gir sju medlemsland grønt lys til å spytte inn over 30 milliarder kroner i et konsortium som skal utvikle nye og mer effektive batterier til elbiler.
13:25 Grønt lys til batteri-satsing EU gir sju medlemsland grønt lys til å spytte inn over 30 milliarder kroner i et konsortium som skal utvikle nye og mer effektive batterier til elbiler.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Takk for input, Randers og Questi! Det ser ut at masseproduksjon lar vente på seg, og hva slags teknologier som får sitt gjennombrudd er litt for spennende.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
questi
08.12.2019 kl 16:33
15778
Haha, vi så samme artikkel grabein
Det ser ut som at de her lar en elastisk elektrolytt fungere som bindermaterial.
"silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE)"
De trådene i illustrasjonen som forbinder silisiumgranulene kan være det som fungere som current collector :)
Det ser ut som at de her lar en elastisk elektrolytt fungere som bindermaterial.
"silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE)"
De trådene i illustrasjonen som forbinder silisiumgranulene kan være det som fungere som current collector :)
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
New method enables the widespread use of silicon-based anodes in Li-ion batteries
Novel polymer to increase energy density, the stability of lithium-ion batteries
Donghai Wang, professor of mechanical and chemical engineering, said, “We found that if you surround the silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE), it allows the silicon to remain stable, so the particles won’t displace within the electrode.”
The GPE consists of a soft ether domain, which responds to its elasticity and a hard cyclic domain, which prevents excessive swelling of the polymer.
Wang reported, “It’s a new approach, where the two components work synergistically together to make the GPE swell and shrink appropriately while keeping silicon anode structure stable.”
According to scientists, their work could potentially increase the energy storage within lithium-ion batteries by 20%.
Wang said, “This is an enabling technology to allow for the ability to use pure silicon in the anodes. Traditionally, only 5% of silicon is used, so the material’s boosting effect is limited. But by using this method, replacing it with pure silicon will significantly increase the capacity and energy density of the cell.”
“Through the union of the silicon and the GPE, it is a pathway to create the next generation of lithium-ion batteries.”
https://www.techexplorist.com/new-method-enables-the-widespread-use-of-silicon-based-anodes-in-li-ion-batteries/28193/
Novel polymer to increase energy density, the stability of lithium-ion batteries
Donghai Wang, professor of mechanical and chemical engineering, said, “We found that if you surround the silicon-based anode with a cushion of a supremely-elastic gel polymer electrolyte (GPE), it allows the silicon to remain stable, so the particles won’t displace within the electrode.”
The GPE consists of a soft ether domain, which responds to its elasticity and a hard cyclic domain, which prevents excessive swelling of the polymer.
Wang reported, “It’s a new approach, where the two components work synergistically together to make the GPE swell and shrink appropriately while keeping silicon anode structure stable.”
According to scientists, their work could potentially increase the energy storage within lithium-ion batteries by 20%.
Wang said, “This is an enabling technology to allow for the ability to use pure silicon in the anodes. Traditionally, only 5% of silicon is used, so the material’s boosting effect is limited. But by using this method, replacing it with pure silicon will significantly increase the capacity and energy density of the cell.”
“Through the union of the silicon and the GPE, it is a pathway to create the next generation of lithium-ion batteries.”
https://www.techexplorist.com/new-method-enables-the-widespread-use-of-silicon-based-anodes-in-li-ion-batteries/28193/
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
questi
05.12.2019 kl 23:33
16122
Binder = fyllmasse/limet som holder de aktive partiklene (feks Silisiumgranuler) i elektrodene sammen.
Current collector(s) = strømførende materiale (ofte kobber) rundt hver side av sine respektive elektroder.
Polymererte Siloksaner [R2SiO]n (norsk: silikon som i silikonpupper) er faktisk fleksibel. Silisium i kraft av å være halvleder er faktisk strømledende dersom det er dopet. R'en i formelen er i vanlig silikon methyl-grupper, kunne da tenkes å være erstattet med dopede nanopartikler av SI.
Så det er teoretisk mulig å ha et stoff der Si inngår (derav ikke 100% men 92%) som er både fleksibel, strømførende, sammenbindende og som har mekanisk styrke.
Current collector(s) = strømførende materiale (ofte kobber) rundt hver side av sine respektive elektroder.
Polymererte Siloksaner [R2SiO]n (norsk: silikon som i silikonpupper) er faktisk fleksibel. Silisium i kraft av å være halvleder er faktisk strømledende dersom det er dopet. R'en i formelen er i vanlig silikon methyl-grupper, kunne da tenkes å være erstattet med dopede nanopartikler av SI.
Så det er teoretisk mulig å ha et stoff der Si inngår (derav ikke 100% men 92%) som er både fleksibel, strømførende, sammenbindende og som har mekanisk styrke.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Randers
05.12.2019 kl 23:01
16139
..kan jo si det på en annen måte enn jeg gjorde, (pluss påpeke igjen at det ikke er mine spekulasjoner).
Det vil uansett bli en HELT ny type batteri, hvor det kanskje brukes en tradisjonell elektrode.
Men å mikse ny type anode med ny type katode blir vel verre ?
Så da heier vi vel på anode-varianten med 92% silisium....
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Hadde vi kvitta oss med litt overdreven pluss/minus-snakk her inne og, så hadde det nok ikke vanket nobelpris, men i det minste litt god stemning og interessant meningsutveksling.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Det kan se sånn ut. Men at elektroden har store deler silisium lover bra. Jeg så meg litt blind på mitt lagrede google-søk, og var mentalt farget mot anoder. Skylder på småbarnsfar-tåka...
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Hva er det dere tror egentlig? Hvis det var slutt på pluss og minus i batteriene, ville det ha vanket Nobelpris og stor oppstandelse. Kanskje begrense fantasien et par hakk!
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Randers
05.12.2019 kl 17:22
16297
Slettet brukerskrev Anode med 92% silisium.
Grabein, la du merke til ordlyden der, ang anoden med 92% silisium ?
"Stanford University have developed a binder-free, flexible, and free-standing electrode comprising
an unprecedented 92% silicon content for Li-ion batteries"
.."and free-standing electrode" - hvilket er samme ordlyden som ble brukt om Nikolas katode, rett ovenfor her.
Videre; begge er "binder-free" også.
Nikola: "The Nikola prototype cell is the first battery that removes binder material and current collectors,
enabling more energy storage within the cell".
-Det virker merogmer som at det snakkes om helt nye typer batterier. Det synes ikke å være en forbedring av det tradisjonelle
batteri, men derimot en helt ny teknologi som enten gjør gml type anode eller katode overflødig ??
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Leydenjar’s silicon anode enters production realm
Start-up Leydenjar is setting up a pilot production line in Eindhoven to prove its high-capacity battery anodes made from nano-textured silicon can be made not just in labs but in factories as well.
Asked to look back at 3.5 years of developing a new anode recipe for lithium-ion batteries, Christian Rood of Leydenjar prefers to answer what outsiders have told him. “Experts and people from the battery industry say we should be happy with the progress we’ve made. Personally, I would have liked to have seen a little more. I guess I’m not easily satisfied,” the company co-founder admits. In any case, it’s fair to say: so far, so good.
Leydenjar, named after the battery’s predecessor, thanks its existence to technology that was developed many years ago at solar cell research institute ECN. Researcher Wim Soppe theorized that nano-texturing would improve the performance of thin-film silicon solar cells. He then successfully developed a plasma-enhanced chemical vapor deposition (PECVD) process to create a layer of silicon nano-pillars on a substrate. Unfortunately, they didn’t perform as well as hoped.
The technology was shelved and almost forgotten until Soppe learned that silicon is a superior host for lithium ions, yet fails miserably as a battery anode because it can’t handle the mechanical stress associated with repeatedly taking in and letting go of guests. The porous structure of pillared silicon might be able to handle that, Soppe figured. This time, he was onto something. In fact, the lithium-loading capacity of his silicon approaches the theoretical limit, without getting damaged by loading and unloading lithium.
Fast forward to today, Leydenjar is gearing up to prove its technology can be mass-produced. The ultimate goal: making anodes for lithium-ion batteries that outperform the traditional graphite ones, without adding cost.
Roll-to-roll
Between the initial lab experiments and looking into manufacturing, a lot of work has been done. One important obstacle was layer thickness. “For proof-of-principle experiments, 200 nanometer is fine, but as an anode in a commercial battery, it needs to be 50 times thicker. Otherwise, it wouldn’t be able to generate a high enough capacity per area,” Rood explains.
Another delicate task was selecting the battery’s electrolyte. Rood: “In a battery, a solid electrolyte interface is formed on the electrodes after a short period of operation. This film’s characteristics depend on the electrolyte and can affect battery performance substantially. We needed to find a good match for our anode.”
Leydenjar successfully increased layer thickness and identified a proper electrolyte, allowing the company to pair the anode with a suitable cathode and start building actual batteries. Their prototype promptly won the BMW Start-up Challenge, providing Leydenjar with an opportunity to present their technology to key executives and developers of the car manufacturer.
“It got us quite a lot of exposure as well. We received calls from various battery and car companies,” says Rood. That kind of attention is a big help when trying to round up additional funding, which Leydenjar secured in March 2018. “This money we used to optimize the energy density of the anode. Our silicon has tenfold the capacity compared to graphite, leading to a 50 percent higher energy density in the battery.”
“We also started working on our production process, because we won’t be selling batteries but rather the manufacturing equipment for our anodes – along with know-how, of course. Our PECVD tools need to seamlessly fit into existing production infrastructure without adding cost.” Both these items have been ticked off from Leydenjar’s list.
Next up is proving all this still holds at actual production volumes. “This is why we’re setting up a roll-to-roll pilot production line in Eindhoven now (the anodes use copper foil as a substrate, PvG). In addition, this will allow us to engage with potential customers and partners on a larger scale. In fact, we’re already working with an OEM and battery manufacturer to develop prototype battery cells.”
A better buy
Apart from the pilot line, Leydenjar is also setting up its own battery lab in Leiden, which will develop battery recipes tailored to different applications. Initially, the start-up targets specialized niche markets, after which it will work its way up to consumer products, to ultimately penetrate the holy grail of battery markets: automotive. Each successive application is more demanding, eg pertaining to battery life.
“We aim to ship our first fully optimized modules to customers in 2021,” states Rood. Will Leydenjar still be a company on its own by then? “I expect we’ll have partnered up with a company in the battery industry. We’re becoming a better buy with every step we take, so sooner or later, an offer should present itself.”
https://bits-chips.nl/artikel/leydenjars-silicon-anode-enters-production-realm/
Start-up Leydenjar is setting up a pilot production line in Eindhoven to prove its high-capacity battery anodes made from nano-textured silicon can be made not just in labs but in factories as well.
Asked to look back at 3.5 years of developing a new anode recipe for lithium-ion batteries, Christian Rood of Leydenjar prefers to answer what outsiders have told him. “Experts and people from the battery industry say we should be happy with the progress we’ve made. Personally, I would have liked to have seen a little more. I guess I’m not easily satisfied,” the company co-founder admits. In any case, it’s fair to say: so far, so good.
Leydenjar, named after the battery’s predecessor, thanks its existence to technology that was developed many years ago at solar cell research institute ECN. Researcher Wim Soppe theorized that nano-texturing would improve the performance of thin-film silicon solar cells. He then successfully developed a plasma-enhanced chemical vapor deposition (PECVD) process to create a layer of silicon nano-pillars on a substrate. Unfortunately, they didn’t perform as well as hoped.
The technology was shelved and almost forgotten until Soppe learned that silicon is a superior host for lithium ions, yet fails miserably as a battery anode because it can’t handle the mechanical stress associated with repeatedly taking in and letting go of guests. The porous structure of pillared silicon might be able to handle that, Soppe figured. This time, he was onto something. In fact, the lithium-loading capacity of his silicon approaches the theoretical limit, without getting damaged by loading and unloading lithium.
Fast forward to today, Leydenjar is gearing up to prove its technology can be mass-produced. The ultimate goal: making anodes for lithium-ion batteries that outperform the traditional graphite ones, without adding cost.
Roll-to-roll
Between the initial lab experiments and looking into manufacturing, a lot of work has been done. One important obstacle was layer thickness. “For proof-of-principle experiments, 200 nanometer is fine, but as an anode in a commercial battery, it needs to be 50 times thicker. Otherwise, it wouldn’t be able to generate a high enough capacity per area,” Rood explains.
Another delicate task was selecting the battery’s electrolyte. Rood: “In a battery, a solid electrolyte interface is formed on the electrodes after a short period of operation. This film’s characteristics depend on the electrolyte and can affect battery performance substantially. We needed to find a good match for our anode.”
Leydenjar successfully increased layer thickness and identified a proper electrolyte, allowing the company to pair the anode with a suitable cathode and start building actual batteries. Their prototype promptly won the BMW Start-up Challenge, providing Leydenjar with an opportunity to present their technology to key executives and developers of the car manufacturer.
“It got us quite a lot of exposure as well. We received calls from various battery and car companies,” says Rood. That kind of attention is a big help when trying to round up additional funding, which Leydenjar secured in March 2018. “This money we used to optimize the energy density of the anode. Our silicon has tenfold the capacity compared to graphite, leading to a 50 percent higher energy density in the battery.”
“We also started working on our production process, because we won’t be selling batteries but rather the manufacturing equipment for our anodes – along with know-how, of course. Our PECVD tools need to seamlessly fit into existing production infrastructure without adding cost.” Both these items have been ticked off from Leydenjar’s list.
Next up is proving all this still holds at actual production volumes. “This is why we’re setting up a roll-to-roll pilot production line in Eindhoven now (the anodes use copper foil as a substrate, PvG). In addition, this will allow us to engage with potential customers and partners on a larger scale. In fact, we’re already working with an OEM and battery manufacturer to develop prototype battery cells.”
A better buy
Apart from the pilot line, Leydenjar is also setting up its own battery lab in Leiden, which will develop battery recipes tailored to different applications. Initially, the start-up targets specialized niche markets, after which it will work its way up to consumer products, to ultimately penetrate the holy grail of battery markets: automotive. Each successive application is more demanding, eg pertaining to battery life.
“We aim to ship our first fully optimized modules to customers in 2021,” states Rood. Will Leydenjar still be a company on its own by then? “I expect we’ll have partnered up with a company in the battery industry. We’re becoming a better buy with every step we take, so sooner or later, an offer should present itself.”
https://bits-chips.nl/artikel/leydenjars-silicon-anode-enters-production-realm/
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Slettet brukerskrev https://www.greencarcongress.com/2019/12/20191202-sicnt.html
Anode med 92% silisium.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Lykkeknotten
26.11.2019 kl 12:33
17127
Slettet brukerskrev Og med AirBus som partner så kan spennende ting skje.
Dette kommer helt klart, Airbus og fly/drone- industrien kan enkelt ta silicon baserte batterier i bruk nå, nærmest en forutsettning. I motsettning til andre industrier som først må fase ut gammle produkter og forpliktelser til underleverandører.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare
Og med AirBus som partner så kan spennende ting skje.
Redigert 21.01.2021 kl 08:18
Du må logge inn for å svare